Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations
نویسندگان
چکیده
We consider the incompressible Euler equations on R or T, where d ∈ {2, 3}. We prove that: (a) In Lagrangian coordinates the equations are locally well-posed in spaces with fixed real-analyticity radius (more generally, a fixed Gevrey-class radius). (b) In Lagrangian coordinates the equations are locally well-posed in highly anisotropic spaces, e.g. Gevrey-class regularity in the label a1 and Sobolev regularity in the labels a2, . . . , ad. (c) In Eulerian coordinates both results (a) and (b) above are false. July 13, 2015.
منابع مشابه
The Euler–Poincaré Equations in Geophysical Fluid Dynamics
Recent theoretical work has developed the Hamilton’s-principle analog of Lie-Poisson Hamiltonian systems defined on semidirect products. The main theoretical results are twofold: 1. Euler–Poincaré equations (the Lagrangian analog of Lie-Poisson Hamiltonian equations) are derived for a parameter dependent Lagrangian from a general variational principle of Lagrange d’Alembert type in which variat...
متن کاملDeformation and Symmetry in the Inviscid SQG and the 3D Euler Equations
The global regularity problem concerning the inviscid SQG and the 3D Euler equations remains outstandingly open. This paper presents several geometric observations on solutions of these equations. One observation stems from a relation between what we call Eulerian and Lagrangian deformations and reflects the alignment of the stretching directions of these deformations and the tangent direction ...
متن کاملStructure-preserving discretization of incompressible fluids
The geometric nature of Euler fluids has been clearly identified and extensively studied over the years, culminating with Lagrangian and Hamiltonian descriptions of fluid dynamics where the configuration space is defined as the volume-preserving diffeomorphisms, and Kelvin’s circulation theorem is viewed as a consequence of Noether’s theorem associated with the particle relabeling symmetry of f...
متن کاملAveraged Lagrangians and the mean dynamical effects of fluctuations in continuum mechanics
We begin by placing the Generalized Lagrangian Mean (GLM) equations for a compressible adiabatic fluid into the Euler-Poincaré (EP) variational framework of fluid dynamics, for an averaged Lagrangian. We then state the EP Averaging Lemma – that GLM averaged equations arise from GLM averaged Lagrangians in the EP framework. Next, we derive a set of approximate small amplitude GLM equations (glm ...
متن کاملAnalyticity of Lagrangian trajectories for well posed inviscid incompressible fluid models
We discuss general incompressible inviscid models, including the Euler equations, the surface quasi-geostrophic equation, incompressible porous medium equation, and Boussinesq equations. All these models have classical unique solutions, at least for short time. We show that they have real analytic Lagrangian paths. More precisely, we show that as long as a solution of any of these equations is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015